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scious processing in humans. Moreover, sev-

eral studies have reported residual local and

specific brain activation patterns in vegetative

state patients, whereas long-range neural inte-

gration observed during conscious processing

was lacking (4, 5). Nevertheless, on the basis

of their findings, Owen et al. argue that the

patient in their study was probably conscious

of herself and her surroundings during fMRI

testing. This hypothesis opens another issue: If

this patient is actually conscious, why wouldn’t

she be able to engage in intentional motor acts,

given that she had not suffered functional or

structural lesion of the motor pathways? 

The debate over whether vegetative state

patients can engage in conscious processing is

reminiscent of the Turing test in artificial

intelligence: Can we distinguish a conscious

human from a computer solely on the basis of

a question-answer method (6)? Adapting the

Turing test to the present debate, we might

ask: Can we determine whether a person is

conscious solely on the basis of a question–brain

activation method? Whereas these questions

have stimulated intense philosophical debate

about artificial intelligence, most cognitive

neuroscientists have adopted a more naturalis-

tic approach. Consciousness is univocally

probed in humans through the subject’s report

of his or her own mental states. A subject who

reports, “I read the word consciousness on this

page,” can be considered as conscious (7). The

ability to report one’s own mental state is the

fundamental property of consciousness. 

Owen et al. did not directly collect such a

subjective report. When conscious reporting is

not possible, an alternative solution is to exam-

ine the three other psychological attributes of

conscious processing: (i) active maintenance

of mental representations; (ii) strategical pro-

cessing; and (iii) spontaneous intentional

behavior (8). Clearly, one of the most impres-

sive aspects of the work by Owen et al. is the

demonstration that activation of task-related

neural networks is actively maintained. During

each experimental task, instructions were

delivered only once, and the corresponding

neural network remained activated throughout

the entire 30-s period. In contrast, unconscious

mental representations observed in many clin-

ical and experimental contexts are fleeting,

lasting a few seconds or less (9–11).

Though not totally convincing on the issue

of consciousness, the Owen et al. work paves

the way for future functional brain-imaging

studies on comatose and vegetative state

patients. One can imagine probing each of the

psychological properties of conscious pro-

cessing listed above, and even trying to collect

subjective reports by modifying the experi-

mental paradigm. 
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O
ver the past 100 years, Earth’s climate

has become warmer and precipita-

tion regimes have changed. Can biol-

ogists predict the effects of these changes on

the distributions of species? 

Conservation strategies for managing

biodiversity have traditionally assumed that

species distributions change relatively

slowly, unless they are directly affected by

human activities. However, there is a grow-

ing consensus that these strategies must

anticipate the impacts of climate change (1, 2).

Conservationists must therefore assess

both current and future distributions of

species. Numerous new bioclimatic models

estimate relationships between the distri-

butions of species and climate. However,

the decision of which model to use has gen-

erally been ad hoc, and there is little consen-

sus regarding the relative performance of

these models.

Bioclimatic modeling has been driven by

a pragmatic desire to obtain results that are

useful for biodiversity management (3, 4).

The models are based on some problematic

ecological assumptions—for example, that

species distribution and assemblages are in

a constant steady-state relationship with

contemporary climate—that, despite being

clearly acknowledged (5), remain unre-

solved. However, there has been even less

emphasis on understanding which models

best predict species distributions and why.

The proponents and architects of some of

the most prominent bioclimatic models

recently joined forces to test the predictive

uncertainties of their models and to identify

the techniques best suited for modeling cur-

rent species distributions. Elith et al. have

now published the first results in Ecography

(6). Sixteen models were tested on climate

and species distribution data from five conti-

nental regions. In contrast to many previous

studies, data for testing the models were col-

lected independently. 

The models with the best performance

were the most recent and complex ones and

fell into two groups: machine-learning pro-

grams that seek to obtain a stable selection

of predictors from a larger range of alterna-

tives, and community models that simulta-

neously analyze all species in relation to

environmental parameters and then calibrate

model coefficients for individual species. In

contrast, some of the most widely used mod-

els for modeling species distributions, such

as GARP (which uses a genetic algorithm)

and BIOCLIM (which uses an envelope

approach), performed poorly under the cri-

teria used to evaluate them.

One critical question is whether models

that can successfully predict current species

distributions also provide robust predictions of

future distributions under climate change.

(This question is not addressed by Elith et al.,
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who focus on current distributions.) Different

bioclimatic models can produce highly vari-

able predictions of species-range shifts (7–11),

and there is a poor correlation between a

model’s ability to fit present and future distri-

butions (12). For example, Pearson et al. (9)

applied nine bioclimatic models to predict the

distributions of four South African plants

under current and future climates. Predicted

distribution changes varied from 92% loss to

322% gain for one species; similar variability

was recorded for the other species. In another

study, observed and predicted changes in the

distributions of British breeding birds differed

markedly for 90% of the 116 birds modeled

(see the figure) (8). 

Evaluating model performance under cli-

mate change requires a paradigm shift,

because there are no data against which pre-

dictions of future ranges can be tested (12).

One way to overcome this problem is to make

use of backward predictions, or “hindcast-

ing.” Here, models are calibrated with current

species-climate relationships and are then

tested with reconstructed species distribu-

tions from the fossil record. This approach

has been used to test whether climatic

requirements of species remain stable over

time (13, 14). However, hindcasting is only

feasible for a few species and regions for

which a good fossil record is available.

The predictive ability of models can also

be tested through “space-for-time” substitu-

tion. Here, bioclimatic models are calibrated

with data from one region, and predictions are

tested with distributions of species from other

regions. Randin et al. recently illustrated the

principle by predicting plant species distribu-

tions in the Austrian Alps based on knowledge

of species-climate relationships in the Swiss

Alps and vice versa (15). They found that

predictions from generalized linear models

(which impose a theoretical response curve)

were more easily transferable in space and

time than generalized additive models (which

produce data-driven response curves). How-

ever, the latter yielded more precise predic-

tions in the regions where the models had

been calibrated.

Do data-driven, machine-learning, and

community models provide more precise pre-

dictions of species distributions in a given

region because they overfit the data? Does

model precision come at the expense of gen-

erality, that is, the ability to predict species

distributions in different regions or times?

And do theory-driven response curves im-

prove the generality of models? The results of

the two studies (6, 15) call for a second gener-

ation of studies to test predictions of biocli-

matic models under climate change. 

Predictions of future distributions of

species from bioclimatic models may fail

because of uncertain predictions of local cli-

mate change, inaccurate estimates of the cli-

matic tolerance of species, and unforeseen

evolutionary changes in populations (16). We

will never be able to predict the future with

accuracy, but we need a strategy for using

existing knowledge and bioclimatic modeling

to improve understanding of the likely effects

of future climate on biodiversity. 
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Turtle dove

Red-backed shrike

A mixed picture of model performance. Observed and predicted distributions of the red-backed shrike
(Lanius collurio) and turtle dove (Streptopelia turtur) in Britain. Bioclimatic models predict the distributions
in the 1970s reasonably well, but fail to predict the contraction of the range of the red-backed shrikes in the
1990s. However, the contraction of the range of the turtle dove is successfully predicted by models. Maps were
produced with data and generalized linear models from (8).P
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